Los Alamos National Laboratory
Lab Home  |  Phone
 
 

LANL: Chemistry Division

Groups

CONTACTS

  • Division Leader
    David Morris
  • Deputy Division Leader
    Mark McCleskey
  • Division Office:
    Phone: 505 667-4457

The Drive Toward Hydrogen Vehicles Just Got Shorter

Listen to a podcast from Science Magazine on this breakthrough.

Watch a video of Dr. John Gordon discussing this work.

Researchers have revealed a new single-stage method for recharging the hydrogen storage compound ammonia borane. The breakthrough makes potentially problematic hydrogen a more attractive fuel for vehicles and other transportation modes.

In an article appearing March 18th in Science Magazine, Los Alamos National Laboratory (LANL) and University of Alabama researchers working within the U.S. Department of Energy's Chemical Hydrogen Storage Center of Excellence describe a significant advance in hydrogen storage science.

Artist’s conception of the “one pot” regeneration of ammonia borane.

Hydrogen is in many ways an ideal fuel. It possesses a high energy content per unit mass when compared to petroleum, and it can be used to run a fuel cell, which in turn can be used to power a very clean engine. On the down side, H2 has a low energy content per unit volume versus petroleum (it is very light and bulky), and the crux of the hydrogen issue has been how to get enough of the element on board a vehicle to power it a reasonable distance.

Work at LANL and elsewhere has focused on chemical hydrides for storing hydrogen, with one material in particular, ammonia borane, taking center stage. Ammonia borane is attractive because its hydrogen storage capacity approaches a whopping 20 percent by weight—sufficient that with appropriate engineering it should permit hydrogen fueled vehicles to go over 300 miles on a single "tank," a bench-mark set by the U.S. Department of Energy.

Hydrogen release from ammonia borane has been well demonstrated, and its chief drawback to use has been the lack of energy-efficient methods to reintroduce hydrogen into the spent fuel once burned. In other words, until now, after hydrogen release, the ammonia borane couldn’t be recycled efficiently enough.

The Science paper describes a simple scheme that regenerates ammonia borane from a hydrogen depleted spent fuel form (called polyborazylene) back into usable fuel via reactions taking place in a single container. This "one pot" method represents a significant step towards the practical use of hydrogen in vehicles by potentially reducing the expense and complexity of the recycle stage. Regeneration takes place in a sealed pressure vessel using hydrazine and liquid ammonia at 40 degrees Celsius and necessarily takes place off-board a vehicle. The researchers envision vehicles with interchangeable hydrogen storage "tanks" containing ammonia borane that are used, and sent back to a factory for recharge.

The Chemical Hydrogen Storage Center of Excellence was one of three Center efforts funded by DOE. The other two focused on hydrogen sorption technologies and storage in metal hydrides. The Center of Excellence was a collaboration between Los Alamos, Pacific Northwest National Laboratory, and academic and industrial partners.

LANL researcher Dr. John Gordon, corresponding author for the paper, credits collaboration encouraged by the Center model with the breakthrough. Gordon says, "Crucial predictive calculations carried out by University of Alabama Professor Dave Dixon’s group guided the experimental work of the Los Alamos team, which included researchers from both the Chemistry Division and the Materials Physics and Applications Division at LANL. This advance built on earlier work by the LANL team, but a specific conceptual breakthrough lead to the research described in the Science paper. According to Gordon, "it was the insight, creativity and hard work of Dr. Andrew Sutton of Chemistry Division at LANL that provided the key to unlocking the 'one-pot' chemistry."

LALP #11-016 Hydrogen Storage Press Release

March 2011

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Inside | © Copyright 2010-11 Los Alamos National Security, LLC All rights reserved | Disclaimer/Privacy | Web Contact